CHAPTER 8

Differentiation under the Integral Sign. Improper Integrals. The Gamma Function

1. Differentiation under the Integral Sign

We recall the elementary integration formula

$$
\int_{0}^{1} t^{n} d t=\left[\frac{1}{n+1} t^{n+1}\right]_{0}^{1}=\frac{1}{n+1}
$$

valid for any $n>-1$. Since n need not be an integer, we employ the variable x and write

$$
\begin{equation*}
\phi(x)=\int_{0}^{1} t^{x} d t=\frac{1}{x+1}, \quad x>-1 \tag{1}
\end{equation*}
$$

Suppose we wish to compute the derivative $\phi^{\prime}(x)$. We can proceed in two ways. Equating the first and last expressions in (1), we have

$$
\phi(x)=\frac{1}{x+1}, \quad \phi^{\prime}(x)=-\frac{1}{(x+1)^{2}} .
$$

On the other hand, we may try the following procedure:

$$
\begin{equation*}
\frac{d}{d x} \phi(x)=\frac{d}{d x} \int_{0}^{1} t^{x} d t=\int_{0}^{1} \frac{d}{d x}\left(t^{x}\right) d t=\int_{0}^{1} t^{x} \log t d t \tag{2}
\end{equation*}
$$

Is it true that

$$
\begin{equation*}
\int_{0}^{1} t^{x} \log t d t=-\frac{1}{(x+1)^{2}}, \tag{3}
\end{equation*}
$$

at least for $x>-1$? In this section we shall determine conditions under which a process such as (2) is valid. To examine the validity of differentiation under the integral sign, as the process (2) is called, we first develop a property of continuous functions on R^{2}.

Let S be a region in R^{2} and $f: S \rightarrow R^{1}$ a continuous function. We recall that f is continuous at a point $\left(x_{0}, y_{0}\right) \in S$ if for every $\varepsilon>0$ there is a $\delta>0$ such that

$$
\left|f(x, y)-f\left(x_{0}, y_{0}\right)\right|<\varepsilon
$$

whenever

$$
\left|x-x_{0}\right|+\left|y-y_{0}\right|<\delta .
$$

It is important to note that the size of δ depends not only on the size of ε but also on the particular point $\left(x_{0}, y_{0}\right)$ at which continuity is defined. If the size of δ depends only on ε and not on the point $\left(x_{0}, y_{0}\right)$, then f is said to be uniformly continuous on S. That is, f is uniformly continuous if for every $\varepsilon>0$, there is a $\dot{\delta}>0$ such that

$$
\left|f\left(x^{\prime}, y^{\prime}\right)-f\left(x^{\prime \prime}, y^{\prime \prime}\right)\right|<\varepsilon
$$

for all $\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right)$ in S which satisfy the inequality

$$
\left|x^{\prime}-x^{\prime \prime}\right|+\left|y^{\prime}-y^{\prime \prime}\right|<\delta .
$$

In other words, the size of δ depends only on ε.
We denote the boundary of a region S in R^{2} by ∂S. A region in R^{2} is said to be bounded if it is contained in a sufficiently large disk. A region S is closed if it contains its boundary, $\hat{c} S$. The basic theorem concerning uniformly continuous function states that a function f which is continuous on a closed bounded region is uniformly continuous. The same result holds in any number of dimensions. We omit the proof.

Suppose a function ϕ is given by the formula

$$
\phi(x)=\int_{c}^{d} f(x, t) d t, \quad a \leq x \leq b
$$

where c and d are constants. If the integration can be performed explicitly, then $\phi^{\prime}(x)$ can be found by a computation. However, even when the evaluation of the integral is impossible, it sometimes happens that $\phi^{\prime}(x)$ can be found. The basic formula is given in the next theorem, known as Leibniz' Rule.

Theorem 1. Suppose that ϕ is defined by

$$
\begin{equation*}
\phi(x)=\int_{c}^{d} f(x, t) d t, \quad a \leq x \leq b \tag{4}
\end{equation*}
$$

where c and d are constants. If f and f_{x} are continuous in the rectangle

$$
R=\{(x, t): a \leq x \leq b, \quad c \leq t \leq d\}
$$

then

$$
\begin{equation*}
\phi^{\prime}(x)=\int_{c}^{d} f_{x}(x, t) d t, \quad a<x<b . \tag{5}
\end{equation*}
$$

That is, the derivative may be found by differentiating under the integral sign.

Proof. We prove the theorem by showing that the difference quotient

$$
[\phi(x+k)-\phi(x)] / k
$$

tends to the right side of (5) as k tends to zero. If x is in (a, b) then, from (4), we have

$$
\begin{aligned}
\frac{\phi(x+k)-\phi(x)}{k} & =\frac{1}{k} \int_{c}^{d} f(x+k, t) d t-\frac{1}{k} \int_{c}^{d} f(x, t) d t \\
& =\frac{1}{k} \int_{c}^{d}[f(x+k, t)-f(x, t)] d t .
\end{aligned}
$$

Since differentiation and integration are inverse processes, we can write

$$
f(x+k, t)-f(x, t)=\int_{x}^{x+k} f_{\xi}(\xi, t) d \xi
$$

and so

$$
\frac{\phi(x+k)-\phi(x)}{k}=\frac{1}{k} \int_{c}^{d} \int_{x}^{x+k} f_{\xi}(\xi, t) d \xi d t
$$

We note that f_{x} is uniformly continuous on R, since a function which is continuous on a bounded, closed set is uniformly continuous there. Therefore, using the comma notation for the derivative with respect to the first variable, if $\varepsilon>0$ is given, there is a $\delta>0$ such that

$$
\left|f_{.1}(\xi, t)-f_{.1}(x, t)\right|<\frac{\varepsilon}{d-c}
$$

for all t in $[c, d]$ and all ξ with $|\xi-x|<\delta$. We now wish to show that

$$
\frac{\phi(x+k)-\phi(x)}{k}-\int_{c}^{d} f_{11}(x, t) d t \rightarrow 0 \quad \text { as } k \rightarrow 0 .
$$

We write

$$
\int_{c}^{d} f_{, 1}(x, t) d t=\frac{1}{k} \int_{c}^{d} \int_{x}^{x+k} f_{1}(x, t) d \xi d t
$$

which is true because the integrand on the right does not contain ξ. Substituting this last expression in the one above, we find, for $0<|k|<\delta$,

$$
\begin{aligned}
& \left|\frac{\phi(x+k)-\phi(x)}{k}-\int_{c}^{d} f_{1}(x, t) d t\right| \\
& \quad=\left|\int_{c}^{d}\left\{\frac{1}{k} \int_{x}^{x+k}\left[f_{, 1}(\xi, t)-f_{, 1}(x, t)\right] d \xi\right\} d t\right| \\
& \quad \leq \int_{c}^{d}\left|\frac{1}{k} \int_{x}^{x+k} \frac{\varepsilon}{d-c} d \xi\right| d t=\frac{\varepsilon}{(d-c)} \cdot(d-c)=\varepsilon .
\end{aligned}
$$

Since ε is arbitrary, the theorem follows.

Theorem 1 shows that the formula (3) is justified for $x>0$, since the integrand $f(x, t)$ is then continuous in an appropriate rectangle. Later we shall examine more closely the validity of (3) when $-1<x \leq 0$, in which case the integral is improper.

Example 1. Find the value of $\phi^{\prime}(x)$ if

$$
\phi(x)=\int_{0}^{\pi / 2} f(x, t) d t ; \quad f(x, t)=\left\{\begin{array}{cl}
\frac{\sin x t}{t} & \text { if } t \neq 0 \\
x & \text { if } t=0
\end{array}\right.
$$

Solution. Since

$$
\lim _{t \rightarrow 0} \frac{\sin x t}{t}=x \lim _{t \rightarrow 0} \frac{\sin x t}{x t}=x,
$$

the integrand is continuous for $0 \leq t \leq \pi / 2$ and for all x. Also, we have

$$
f_{x}(x, t)=\left\{\begin{array}{cl}
\cos x t & \text { if } t \neq 0 \\
1=\cos x t & \text { if } t=0
\end{array}\right.
$$

so $f_{x}(x, t)$ is continuous everywhere. Therefore

$$
\phi^{\prime}(x)=\int_{0}^{\pi / 2} \cos x t d t=-\left[\frac{1}{x} \sin x t\right]_{0}^{\pi / 2}=-\frac{\sin (\pi / 2) x}{x}, \quad x \neq 0 .
$$

It is a fact that the integral expression for ϕ cannot be evaluated explicitly.
Example 2. Evaluate

$$
\int_{0}^{1} \frac{d u}{\left(u^{2}+1\right)^{2}}
$$

by letting

$$
\phi(x)=\int_{0}^{1} \frac{d u}{u^{2}+x}=\frac{1}{\sqrt{x}} \arctan (1 / \sqrt{x})
$$

and computing $-\phi^{\prime}(1)$.
Solution.

$$
\phi^{\prime}(x)=-\int_{0}^{1} \frac{d u}{\left(u^{2}+x\right)^{2}}=\frac{1}{\sqrt{x}} \frac{-\frac{1}{2} x^{-3 / 2}}{1+(1 / x)}-\frac{1}{2 x \sqrt{x}} \arctan \frac{1}{\sqrt{x}}
$$

and

$$
-\phi^{\prime}(1)=\int_{0}^{1} \frac{d u}{\left(u^{2}+1\right)^{2}}=\frac{1}{2}\left(\frac{1}{2}+\arctan 1\right)=\frac{1}{2}\left(\frac{1}{2}+\frac{\pi}{4}\right) .
$$

Leibniz' Rule may be extended to the case where the limits of integration

Fig. 8-1

also depend on x. We consider a function defined by

$$
\begin{equation*}
\phi(x)=\int_{u_{0}(x)}^{u_{1}(x)} f(x, t) d t, \tag{6}
\end{equation*}
$$

where $u_{0}(x)$ and $u_{1}(x)$ are continuously differentiable functions for $a \leq x \leq b$. Furthermore, the ranges of u_{0} and u_{1} are assumed to lie between c and d (Fig. 8-1).
To obtain a formula for the derivative $\phi^{\prime}(x)$, where ϕ is given by an integral such as (6), it is simpler to consider a new integral which is more general than (6). We define

$$
\begin{equation*}
F(x, y, z)=\int_{y}^{z} f(x, t) d t \tag{7}
\end{equation*}
$$

and obtain the following corollary of Leibniz' Rule.
Theorem 2. Suppose that f satisfies the conditions of Theorem 1 and that F is defined by (7) with $c<y, z<d$. Then

$$
\begin{align*}
& \frac{\partial F}{\partial x}=\int_{y}^{z} f_{, 1}(x, t) d t, \tag{8a}\\
& \frac{\partial F}{\partial y}=-f(x, y), \tag{8b}\\
& \frac{\partial F}{\partial z}=f(x, z) . \tag{8c}
\end{align*}
$$

Proof. Formula (8a) is Theorem 1. Formulas (8b) and (8c) are precisely the Fundamental Theorem of Calculus, since taking the partial derivative of F with respect to one variable, say y, implies that x and z are kept fixed.

Theorem 3 (General Rule for Differentiation under the Integral Sign). Suppose that f and $\partial f / \partial x$ are continuous in the rectangle

$$
R=\{(x, t): a \leq x \leq b, \quad c \leq t \leq d\}
$$

and suppose that $u_{0}(x), u_{1}(x)$ are continuously differentiable for $a \leq x \leq b$
with the range of u_{0} and u_{1} in (c, d). If ϕ is given by

$$
\phi(x)=\int_{u_{0}(x)}^{u_{1}(x)} f(x, t) d t,
$$

then

$$
\begin{align*}
\phi^{\prime}(x)= & f\left[x, u_{1}(x)\right] u_{1}^{\prime}(x)-f\left[x, u_{0}(x)\right] \cdot u_{0}^{\prime}(x) \\
& +\int_{u_{0}(x)}^{u_{1}(x)} f_{x}(x, t) d t \tag{9}
\end{align*}
$$

Proof. We observe that

$$
F\left(x, u_{0}(x), u_{1}(x)\right)=\phi(x)
$$

in Theorem 2. Applying the Chain Rule, we get

$$
\phi^{\prime}(x)=F_{x}+F_{y} u_{0}^{\prime}(x)+F_{z} u_{1}^{\prime}(x) .
$$

Inserting the values of F_{x}, F_{y}, and F_{z} from (8), we obtain the desired result (9).
Example 3. Find $\phi^{\prime}(x)$, given that

$$
\phi(x)=\int_{0}^{x^{2}} \arctan \frac{t}{x^{2}} d t
$$

Solution. We have

$$
\frac{\partial}{\partial x}\left(\arctan \frac{t}{x^{2}}\right)=\frac{-2 t / x^{3}}{1+\left(t^{2} / x^{4}\right)}=-\frac{2 t x}{t^{2}+x^{4}}
$$

We use formula (9) and find

$$
\phi^{\prime}(x)=(\arctan 1) \cdot(2 x)-\int_{0}^{x^{2}} \frac{2 t x d t}{t^{2}+x^{4}} .
$$

Setting $t=x^{2} u$ in the integral on the right, we obtain

$$
\phi^{\prime}(x)=\frac{\pi x}{2}-\int_{0}^{1} \frac{2 x^{3} u \cdot x^{2} d u}{x^{4} u^{2}+x^{4}}=\frac{\pi x}{2}-x \int_{0}^{1} \frac{2 u d u}{u^{2}+1}=x\left(\frac{\pi}{2}-\log 2\right) .
$$

Problems

In each of Problems 1 through 5, express $\phi^{\prime}(x)$ as a definite integral, using Leibniz' Rule.

1. $\phi(x)=\int_{0}^{1} \frac{\sin x t d t}{1+t}$
2. $\phi(x)=\int_{0}^{2} \frac{e^{-x t} d t}{1+t^{2}}$
3. $\phi(x)=\int_{1}^{2} \frac{e^{-t} d t}{1+x t}$
4. $\phi(x)=\int_{0}^{1} \frac{t^{2} d t}{(1+x t)^{2}}$
