CHAPTER 8

Differentiation under the Integral Sign.
Improper Integrals. The Gamma
Function

1. Differentiation under the Integral Sign
We recall the elementary integration formula

! 1 ! 1
t"dt =| —— 1" = ,
o n+1 o n+1

valid for any n > — 1. Since # need not be an integer, we employ the variable
x and write

IX —_ l pa—
¢(x)=£zdz_x——+l, x> —1. )

Suppose we wish to compute the derivative ¢’(x). We can proceed in two
ways. Equating the first and last expressions in (1), we have

1 1

¢(x)=x_+l’ ¢'(x) = ar )
On the other hand, we may try the following procedure:
d d (! 'd !
— =—| fdi=| —(¥)dt = x
T d(x) dXL L dx( ) L t*logtdt. V)
Is it true that
1
1
x] = 3
L *logt dt EFIE 3

at least for x > —1? In this section we shall determine conditions under
which a process such as (2) is valid. To examine the validity of differentiation
under the integral sign, as the process (2) is called, we first develop a property
of continuous functions on R2.
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Let Sbe aregionin R?and f: S — R' a continuous function. We recall that
/'is continuous at a point (x,,,) €S if for every ¢ > 0 there is a ¢ > 0 such
that

|./(x‘,|‘) _f(x()u“o)l <é&
whenever

|x = x| + |3 — >0l < 0.
It is important to note that the size of o depends not only on the size of ¢ but
also on the particular point (x,, y,) at which continuity is defined. If the size
of & depends only on ¢ and not on the point (x,.),), then f'is said to be
uniformly continuous on S. That is, fis uniformly continuous if for every ¢ > 0,
there is a 0 > 0 such that

[/(x") = fx" )| <&
for all (x’,)”), (x”,»”) in S which satisfy the inequality

[x = x"|+ |y =" <o.

In other words, the size of o depends only on ¢.

We denote the boundary of a region S in R? by ¢S. A region in R? is said
to be bounded if it is contained in a sufficiently large disk. A region S is
closed if it contains its boundary, ¢S. The basic theorem concerning uni-
formly continuous function states that a function f which is continuous on a
closed bounded region is uniformly continuous. The same result holds in any
number of dimensions. We omit the proof.

Suppose a function ¢ is given by the formula

d
d(x) =f flx,0)dt, a<x<b,

where ¢ and d are constants. If the integration can be performed explicitly,
then ¢’(x) can be found by a computation. However, even when the evalua-
tion of the integral is impossible, it sometimes happens that ¢’(x) can be
found. The basic formula is given in the next theorem, known as Leibniz’
Rule.

Theorem 1. Suppose that ¢ is defined by
d
() = j Siydi,  a<x<h, @

where ¢ and d are constants. If f and f, are continuous in the rectangle
R={(x,):a<x<b c<t<d},

then
d'(x) = jd/x(x, nad, a<x<b. %)

That is, the derivative may be found by differentiating under the integral sign.
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PrOOF. We prove the theorem by showing that the difference quotient

[o(x + k) — ¢(x) /K

tends to the right side of (5) as & tends to zero. If x is in (g, b) then, from (4),
we have

dx+k) — () _ 1[4, _L
.—k______kjtj(x+k,l)dl kjt/(x,x)dz

= l%r [f(x +k, 1) — f(x,0)]dt.
Since differentiation and integrati:m are inverse processes, we can write
S+ ko) = Jx.0) = f ez,
and so )

Baxl=00 " penazar

k k).

X

We note that £, is uniformly continuous on R, since a function which is con-
tinuous on a bounded, closed set is uniformly continuous there. Therefore,
using the comma notation for the derivative with respect to the first variable,
if ¢ > 0 is given, there is a > 0 such that

a0 = fan 0] < =

for all ¢ in [¢,d] and all ¢ with |¢ — x| < 6. We now wish to show that

w_rhu,l)mao ask —0.

We write

d . 1 d (Px+k )
J[n(x,l)dl=;j j Sa(x,0dEd,

which is true because the integrand on the right does not contain &. Sub-
stituting this last expression in the one above, we find, for 0 < |k| < J,

Sx+ k) = ¢x) kz — o) _ r/j.(x, ) d:l

d(] [x+k_ A
= J {ZJ [‘/‘l(é,l) —/'l(x”)]dé} dt

1 [*** ¢
EJ; d—cdé

Since ¢ is arbitrary, the theorem follows.

8 g p—
dl—m'(d—()—&
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Theorem 1 shows that the formula (3) is justified for x > 0, since the
integrand f(x,¢) is then continuous in an appropriate rectangle. Later we
shall examine more closely the validity of (3) when —1 < x <0, in which
case the integral is improper.

ExaMpLE |. Find the value of ¢’(x) if

sinxt .
n2 A — ifr#0,
d(x) = J(x,0dt; S(x,1) = t
0 X ift=0.
SOLUTION. Since

. sinxt . sinxt

lim = xlim = X,

-0 -0 Xt

the integrand is continuous for 0 < ¢ < n/2 and for all x. Also, we have

cos xt ifr#0,
l=cosxt ift=0,

Sx 0= {
$0 f,(x, 1) is continuous everywhere. Therefore

n/2 n/2 :
¢’(x)=J cosxtdt = —I}sinxt] = —-Mg—)ﬁ, x #0.

x
V] 0
It is a fact that the integral expression for ¢ cannot be evaluated explicitly.

ExaMPLE 2. Evaluate

J Y du
o W+ 1)
by letting
Y odu 1 ~
= = — /
d(x) L Zrx \/} arctan (1/,/x)

and computing — ¢’(1).

SOLUTION.
V' du 1 —3x
() = — =——"— — ——arctan—
') L W T AT+AD " 2x T Ux

oy [ du 1] _1{1 =
—¢(])_j0 (u—2-+—]—)-2-—2(§+arctan l) —2<2+4).

Leibniz’ Rule may be extended to the case where the limits of integration

and
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Fig.81 0 o = b
also depend on x. We consider a function defined by

uy(x)
(x) = Sx,0dt, (6)
ugy(x)
where uy(x) and u,(x) are continuously differentiable functions fora < x < b.
Furthermore, the ranges of ¥, and u, are assumed to lie between ¢ and d
(Fig. 8-1).
To obtain a formula for the derivative ¢’(x), where ¢ is given by an in-
tegral such as (6), it is simpler to consider a new integral which is more
general than (6). We define

F(x,y,2) = J Sfx, )t (M
y
and obtain the following corollary of Leibniz’ Rule.

Theorem 2. Suppose that f satisfies the conditions of Theorem 1 and that F is
defined by (7) withc < y,z < d. Then

gg = J;f_,(x, ndt, (8a)
%‘yf = —f(e)), (8b)
OF _

o . (8¢)

PROOF. Formula (8a) is Theorem 1. Formulas (8b) and (8c) are precisely the
Fundamental Theorem of Calculus, since taking the partial derivative of F
with respect to one variable, say y, implies that x and z are kept fixed.

Theorem 3 (General Rule for Differentiation under the Integral Sign). Sup-
pose that f and 0f]0x are continuous in the rectangle

R={(x,t):a<x<b, c<t<d},

and suppose that uy(x), u,(x) are continuously differentiable for a < x < b
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with the range of uy and u, in (c,d). If ¢ is given by

o= " fexnyar,

up(x)

then

&' (x) = f[x,u, (x)Juy (x) — f[x, u6(x)] - up(x)

u. X 9
+ ‘ )fx(x,l)a'l. ©)

ug(x)
PROOF. We observe that
Fx,up(x),uy(x)) = ¢(x)
in Theorem 2. Applying the Chain Rule, we get
¢’ (x) = F, + Fuo(x) + Fui(x).

Inserting the values of F, F;, and F, from (8), we obtain the desired result (9).
ExaMmPLE 3. Find ¢’(x), given that

x2
d(x) = j arctan Lza't.
x

0

SOLUTION. We have

2 (arctan L ) = —ux | Aux
ox x2) T 1+ (3xY 4+ x*

We use formula (9) and find

* 2xdt
’l +x4’

¢’(x) = (arctan 1) - (2x) — J

0
Setting ¢ = x%u in the integral on the right, we obtain
g 4 g

~

P =X '2x3u~x2du_n_x_x " udu _ T log?
2 J0x4u2+x“_2 R B VRt &

PROBLEMS

In each of Problems 1 through 5, express ¢'(x) as a definite integral, using Leibniz’
Rule.

! sin xt dt 2o dt
1. ¢(x)=f sin xtat 2. ¢(x)=j‘ e a
o L+1¢ o 1+ 12

_ 2 otdt _ Yot
3. ¢(x)—jl 1+ x 4. ¢(x)—J:) (—l'm






